
Basics of Programming:
if…else, iterations,
custom functions

Enrico Toffalini

1

Conditional Programming
Conditional statements like if, if...else, and ifelse in R are essential
tools for automating tasks and assisting decision making in data science. What
follows are a few simple “toy examples”, but focus on the underlying logic. This
will be greatly useful in more advanced applications

if statement

the if statement performs an action only if a condition is met
age = 20

if(age >= 18){
 print("Adult")
}

[1] "Adult"

2

if statement
Basic flowchart showing the logic of the if statement:

3

if...else statement
Sometimes, however, you may need to perform alternative actions

4

if...else statement
Sometimes, however, you may need to perform alternative actions

Here is a practical example of the if...else statement

In the above example:

if age is 18 or older, R will print "Adult";

otherwise (else) it will print "Minor"

age = 15

if(age >= 18){
 print("Adult")
} else {
 print("Minor")
}

[1] "Minor"

5

if...else if...else statement
When you need to evaluate more than just two alternative conditions, you can
use nested conditional statements, that is you combine multiple if...else
statements

age = 10

if (age >= 18) {
 print("Adult")
} else if (age >= 13) {
 print("Adolescent")
} else if (age >= 2){
 print("Child")
} else {
 print("Infant")
}

[1] "Child"

6

if...else statement
Possible, pratical use of if...else in a preplanned analysis for a
hypothetical preregistered study: automate the decision to conduct additional
analyses based on the result of a preliminary test. This helps create a
reproducible analysis pipeline with a clear set of decisions

PREPLANNED ANALYSIS

preliminary test
tt1 = t.test(x1, x2, data=df, paired=TRUE)

based on the p-value of the preliminary t-test, choose the next step
if (tt1$p.value < 0.05) {
 # If significant, perform an additional analysis with a linear model
 print("Significant result: proceeding with follow-up analysis")
 fit = lm(outcome ~ pred1 + pred2 * moder1, data = df)
 summary(fit)
} else {
 # else, report only the preliminary test
 print("No significant result: reporting preliminary results only")
 print(tt1)
}

7

if...else statement
All previous examples required to evaluate a single particular condition that
might be TRUE or FALSE. However, you often want to apply this type of
operation to an entire vector

Using if and if...else directly on a vector will NOT work as intended:

age = c(2, 28, 15, 1, 4, 67, 42, 14, 7)

if(age >= 18){
 print("Adult")
} else {
 print("Minor")
}

Error in if (age >= 18) {: the condition has length > 1

8

ifelse()
All previous examples required to evaluate a single particular condition that
might be TRUE or FALSE. However, you often want to apply this type of
operation to an entire vector

To handle such cases you can use the base ifelse() function, that evaluates
each element of a vector individually:

— Best practices: store results and set type as appropriate!

age = c(2, 28, 15, 1, 4, 67, 42, 14, 7)

ifelse(age >= 18, "Adult", "Minor")

[1] "Minor" "Adult" "Minor" "Minor" "Minor" "Adult" "Adult"
"Minor" "Minor"

ageCategory = ifelse(age >= 18, "Adult", "Minor")
ageCategory = factor(ageCategory, levels=c("Minor", "Adult"))
ageCategory

[1] Minor Adult Minor Minor Minor Adult Adult Minor Minor
Levels: Minor Adult

9

ifelse()
The ifelse() function can also be nested to manage multiple conditions,
such as in the following example:

age = c(2, 28, 15, 1, 4, 67, 42, 14, 7)

ifelse(age >= 18, "Adult" ,
 ifelse(age >= 13, "Adolescent" ,
 ifelse(age >= 2, "Child",
 "Infant"))

[1] "Child" "Adult" "Adolescent" "Infant" "Child"
[6] "Adult" "Adult" "Adolescent" "Child"

10

dplyr::case_when()
While this works, the nested structure can become cumbersome as the
number of conditions increases.

The above case may become cumbersome and less readable when you need to
combine a large number of conditions. In such cases, the case_when()
function from the dplyr package (part of the tidyverse collection)

age = c(2, 28, 15, 1, 4, 67, 42, 14, 7)

library(dplyr)

case_when(
 age >= 18 ~ "Adult",
 age >= 13 ~ "Adolescent",
 age >= 2 ~ "Child",
 TRUE ~ "Infant"
)

[1] "Child" "Adult" "Adolescent" "Infant" "Child"
[6] "Adult" "Adult" "Adolescent" "Child"

11

Iterative Programming
Iterative programming allows you to repeat one or a series of actions
automatically, for a predetermined number of times or until a condition is met

Let’s start with understanding the basics of iterative programming with the
for loop:

12

for loop
Here are a few simple examples of using the for loop

for(i in 1:5){
 print(i)
}

[1] 1
[1] 2
[1] 3
[1] 4
[1] 5

for(i in 1:5){
 print(i^2)
}

[1] 1
[1] 4
[1] 9
[1] 16
[1] 25

for(i in 1:5){
 print(Sys.time())
 Sys.sleep(1)
}

[1] "2024-11-23 14:46:26 CET"
[1] "2024-11-23 14:46:27 CET"
[1] "2024-11-23 14:46:28 CET"
[1] "2024-11-23 14:46:29 CET"
[1] "2024-11-23 14:46:30 CET"

for(i in 1:5){
 print(Sys.time())
 Sys.sleep(2)
}

[1] "2024-11-23 14:46:31 CET"
[1] "2024-11-23 14:46:33 CET"
[1] "2024-11-23 14:46:35 CET"
[1] "2024-11-23 14:46:37 CET"
[1] "2024-11-23 14:46:39 CET"

13

for loop
Here’s a more interesting example of iterative for loop with practical
usefulness: we want to repeat a data simulation for a predetermined number
of times (5 iterations), each time drawing values from a standard
normal distribution, computing and displaying the average …

This is actually the starting point of a Monte Carlo simulation! 😃

n = 30

set.seed(0) # set a seed for reproducibility: best practice

for(i in 1:5){
 x = rnorm(n = 30, mean = 0, sd = 1)
 print(mean(x))
}

[1] 0.02195079
[1] -0.02577153
[1] -0.009581231
[1] 0.03212316
[1] -0.2946441

14

for loop
in the previous example, the for loop displayed the results but didn’t store it.
For more effective use, you can combine the for loop with indexing with [] to
save each result:

set.seed(0) # set a seed for reproducibility: best practice
niter = 5 # set the desired number of iterations: best prac
initialize a results vector with NAs: best practice!
results = rep(NA, niter)
now run the for loop! :-)
for(i in 1:niter){
 x = rnorm(n = 30, mean = 0, sd = 1)
 results[i] = mean(x)
}
results # display results

[1] 0.021950789 -0.025771530 -0.009581231 0.032123159
-0.294644080

sd(results) # estimate standard error of the mean

[1] 0.1358843
15

for loop
Let’s extend the previous example with … a few more iterations!

→ Enjoy it! This is a proper estimatio
Standard Error of the Mean via Mont
simulation! 😊

STEP 1: RUN SIMULATION

set number of iterations
niter = 10000
initialize results vector
results = rep(NA, niter)
actually run simulation
for(i in 1:niter){
 x = rnorm(n = 30, mean = 0, sd = 1)
 results[i] = mean(x)
}

STEP 2: PLOT RESULTS

histogram, with a large
hist(results, breaks=50)

STEP 3: COMPUTE SD OF RESULTS
sd(results)

[1] 0.1806616
16

for loop
You don’t necessarily have to iterate over a sequence of integers (e.g., “i in
1:10000”; “j in 1:ncol(df)”), although this is the most common practice.
You could iterate over whatever, for example, directly over the elements of a
vector or other data structures

myVect = c("this", "is", "a", "vector", "of", "strings")

for(x in myVect){
 print(toupper(x))
}

[1] "THIS"
[1] "IS"
[1] "A"
[1] "VECTOR"
[1] "OF"
[1] "STRINGS"

17

while loop
The while loop is another type of iterative structure in R. It may be useful
when the precise number of iterations is not predetermined, but depends on a
target being reached

Interpretation: it takes 406 months to reach an amount of when starting with an amount of with a % monthly
interest rate

amount = 1000
month = 0
interest_rate = 0.001 # 0.1% monthly interest rate

while(amount < 1500){
 month = month + 1
 amount = amount + amount * interest_rate
}

month

[1] 406

€1, 500 €1, 000 0.1

18

repeat loop
The repeat loop has a logic similar to the while loop but 1) it always runs at
least one iteration, 2) It explicitly emphasizes repetition until a condition (not
necessarily a target) is met, using a break statement to terminate

repeat{
 roll_die = sample(1:6, 1)
 print(roll_die)
 if(roll_die == 6) break
}

[1] 2
[1] 3
[1] 1
[1] 3
[1] 1
[1] 1
[1] 5
[1] 6

attemptedExper = 0

repeat{
 attemptedExper = attemptedExper +
 tt = t.test(rnorm(10),rnorm(10))
 if(tt$p.value < 0.05) break
}

number of experiments I attempted
get a false positive :-)
attemptedExper

[1] 12

round(tt$p.value , 3)

[1] 0.041

19

apply family
apply is a family of base functions that provide efficient tools for running
iterations on structures like dataframes, vectors, matrices, lists

Traditional loops provide a straghtforward, intuitive way to compute
sequences of operations, but the apply family allows you to run faster
computations… this may become particularly important when you need to
parallelize for computationally intensive tasks

The following is not a computationally heavy task — but for example, let’s say
we want to compute the mean value per column in :this dataframe
 BD SI DS PCn CD VC LN MR CO SS
1 13 10 7 10 15 7 10 16 8 13
2 7 11 6 8 13 10 9 5 9 14
3 12 6 5 7 9 7 7 6 9 8
4 8 7 9 11 1 5 7 6 8 4
5 12 13 8 10 10 10 9 11 13 12
6 13 17 13 7 10 19 13 10 15 13
7 12 10 9 5 10 8 7 9 11 11
8 9 12 15 14 7 11 14 13 8 14
9 11 14 8 11 8 12 14 12 10 9
10 13 12 14 11 5 15 17 14 14 8
11 7 7 7 6 6 6 4 7 12 9
12 10 11 8 8 10 7 7 8 8 15

http://127.0.0.1:6859/data/wisc.csv

20

apply family
Here is how you could use the base apply function for computing the mean
value by column:

In fact, for such a simple task, even colMeans() could be sufficient:

but let consider slightly more complex cases

apply(df, MARGIN=2, FUN=mean, na.rm=T)

 BD SI DS PCn CD VC LN
MR
 9.824121 9.856423 9.706767 9.889169 9.781955 9.867168 9.987437
9.904762
 CO SS
 9.889447 10.005051

colMeans(df, na.rm=T)

 BD SI DS PCn CD VC LN
MR
 9.824121 9.856423 9.706767 9.889169 9.781955 9.867168 9.987437
9.904762
 CO SS
 9.889447 10.005051

21

apply family
Let’s say you need to compute the standard deviation per column …

… or to count the number of NA occurrences per column

in the latter case, we had to define a custom function, but that’s relatively simple to do!

apply(df, MARGIN=2, FUN=sd, na.rm=T)

 BD SI DS PCn CD VC LN MR
2.941790 3.137753 3.072283 2.855583 3.022541 3.167819 2.951726 2.989253
 CO SS
2.999217 2.896523

apply(df, MARGIN=2, FUN=function(x) sum(is.na(x)))

 BD SI DS PCn CD VC LN MR CO SS
 2 3 1 3 1 1 2 1 2 4

22

apply family
Although any of such tasks could be done using a for loop, the code would be
more cumbersome and less efficient. For example, here’s how the exact same
result as the latter apply example could be obtained using a for loop:

results = rep(NA, ncol(df))
names(results) = colnames(df)

for(i in 1:ncol(df)){
 results[i] = sum(is.na(df[,i]))
}

results

 BD SI DS PCn CD VC LN MR CO SS
 2 3 1 3 1 1 2 1 2 4

23

apply family
FYI, other functions within the apply family:
tapply(): applies a function to subsets of a vector grouped by a factor, example
tapply(df$values, df$group, FUN=mean) (know that the function aggregate() might
be more convenient in some cases)

lapply(): applies a function to each element of a list, returning results in a list format,
example lapply(my_list, length)

sapply(): the same as the previous one but returns results as a vector if possible, example
sapply(my_list, length)

mapply() multivariate version of sapply() that runs across more lists or vectors

mapply(rnorm, n=c(2, 6, 4), mean=c(0, 100, 200), sd=c(1, 15, 30))

[[1]]
[1] -0.08178004 2.88841825

[[2]]
[1] 117.59238 108.24465 111.68657 91.52303 101.54431 104.22282

[[3]]
[1] 185.7671 186.2599 215.0463 187.8461

24

sapply
Here’s how sapply() can be used to help compute the standard error of the
mean via Monte Carlo simulation

1. an empty list is initialized;

2. a for loop is used to fill each slot in the list with a vector of 30 randomly generated numbers;

3. sapply is used to compute the mean of each vector in the list;

4. standard error of the mean is computed as the sd on the vector of the means

Saving all generated data allows for more flexibility in analysis, although it
uses more memory

myList = list()
for(i in 1:10000) myList[[i]] = rnorm(30)

ms = sapply(myList, mean)

sd(ms)

[1] 0.1851159

25

lapply and sapply
Here’s another, even more compact way of doing the same, without using any
for loop, but this requires defining a small custom function:

Note: "i" represents the current element of 1:10000 over which lapply iterates. Even though it is practically
useless here, because only random numbers are generated at each iteration, it must be included because sapply
must pass an alement as the argument to the function by default

results = lapply(1:10000, function(i) rnorm(30))

ms = sapply(results, mean)

sd(ms)

[1] 0.1836006

26

Define Custom Functions with function()
Previously, we saw a few cases of custom functions, for example for counting
NAs in vectors, or computing the mean of a randomly generated vector

Here is the schema for defining custom functions with input (argument[s]),
body, and output (return):

define new function with some argument(s) as input
myFunctName = function(arg1 = NA, arg2 = NA, arg3 = TRUE){

 # body, series of operations
 computes several operations
 variously uses arg1, arg2, arg3
 get an object named "res" as final result

 # gives an output
 return(res)
}

27

Define Custom Functions with function()
Here’s a full example:

After creating it, a custom function can be used like any other function:

z_score = function(vect = NA){

 vectM = mean(vect, na.rm=T)
 vectSD = sd(vect, na.rm=T)
 z = (vect - vectM) / vectSD

 return(z)
}

x = c(101, 90, NA, NA, 114, 87, 106, 98, 93)
z_score(x)

[1] 0.27162785 -0.89033574 NA NA 1.64485756 -1.20723491
[7] 0.79979313 -0.04527131 -0.57343658

28

Define Custom Functions with function()
Here’s a slightly more sophisticated example:

Let’s use it:

z_score = function(vect = NA, naRemove = FALSE){

 vectM = mean(vect, na.rm=naRemove)
 vectSD = sd(vect, na.rm=naRemove)
 z = (vect - vectM) / vectSD

 return(z)
}

x = c(101, 90, NA, NA, 114, 87, 106, 98, 93)
z_score(x)

[1] NA NA NA NA NA NA NA NA NA

z_score(x, naRemove=TRUE)

[1] 0.27162785 -0.89033574 NA NA 1.64485756 -1.20723491
[7] 0.79979313 -0.04527131 -0.57343658

29

Define Custom Functions with function()
In some previous examples, custom functions were used directly in
combination with apply(), without curly brackets {} or return(), yet they
worked!

Why?

Generally, curly brackets {} and return() enhance clarity and are best
practice, but in some cases they can be omitted for more compact code:

Curly brackets {} can be skipped if all code fits on a single line

return() can be omitted if the last (or only) code line represents the
output

30

Define Custom Functions with function()
To clarify the previous slide, these are four alternative and increasingly
compact ways of writing the same function:

naCount = function(vect){
 whereNAs = is.na(vect)
 totalNAs = sum(whereNAs)
 return(totalNAs)
}

naCount = function(vect){
 whereNAs = is.na(vect)
 totalNAs = sum(whereNAs)
 totalNAs
}

naCount = function(vect){
 sum(is.na(vect))
}

naCount = function(vect) sum(is.na(vect))

31

