
Data Structures:
Factors, Lists, Matrices, Arrays

Enrico Toffalini

1

Factors, Lists, Matrices, Arrays
As a data scientist, most of your tasks will probably require working with
dataframes and vectors (see Part 1; remember that a dataframe is essentially a
collection of vectors of different types)

However, other data structures that you will encounter are:

Factors: store categorical data; factors are both a data type and a data
structure

Lists: collections of objects of different types, flexible and indexable

Matrices: two-dimensional structures, essentially vectors organized into
rows and columns, all elements must be of the same type

Arrays: generalization of vectors and matrices to multi-dimensional data
(e.g., 3D, 4D arrays), all elements must be of the same type

2

Factors
Factors are a special type of data used to represent categorical data. They
may look similar to simple character vectors. In fact, they function differently:

Internally, they consist of vectors of integers associated with “levels”

Levels are unique categories, labelled for readability

Note how the bottom row lists all existing levels

df$TypeOfCourse

 [1] METHODOLOGY METHODOLOGY METHODOLOGY PROGRAMMING
 [5] METHODOLOGY METHODOLOGY METHODOLOGY METHODOLOGY
 [9] METHODOLOGY SOFT SKILLS PROGRAMMING PROGRAMMING
[13] SOFT SKILLS THEMATIC COURSE METHODOLOGY METHODOLOGY
[17] METHODOLOGY METHODOLOGY METHODOLOGY METHODOLOGY
[21] SOFT SKILLS SOFT SKILLS SOFT SKILLS METHODOLOGY
[25] METHODOLOGY SOFT SKILLS THEMATIC COURSE PROGRAMMING
Levels: METHODOLOGY PROGRAMMING SOFT SKILLS THEMATIC COURSE

3

Factors
At any time, you can convert a vector (or a variable in a dataframe) into a factor
using the as.factor() function

Internally, a factor is stored as integer, with associated labels for levels:

Warning! Despite storing integers, factors are not numeric:

df$TypeOfCourse = as.factor(df$TypeOfCourse)

as.integer(df$TypeOfCourse)

 [1] 1 1 1 2 1 1 1 1 1 3 2 2 3 4 1 1 1 1 1 1 3 3 3 1 1 3 4 2

levels(df$TypeOfCourse)

[1] "METHODOLOGY" "PROGRAMMING" "SOFT SKILLS" "THEMATIC COURSE"

df$TypeOfCourse * 2

 [1] NA
NA
[26] NA NA NA

4

Factors
By default, factors in R are non-ordered, there is no hierarchy between their
categories.

To create ordered factors, you can use the as.ordered() function.

Ordered factors include a hierarchical relationship between levels (e.g., "low" < "medium" <
"high"; or a Likert scale like "Strongly disagree" < "Disagree" < "Neutral" < "Agree" <
"Strongly agree"). Using ordered factors may be especially important for certain data
analysis, e.g., Structural Equation Modeling (SEM) with ordinal data (e.g., using the lavaan
package)

as.ordered(df$TypeOfCourse)

 [1] METHODOLOGY METHODOLOGY METHODOLOGY PROGRAMMING
 [5] METHODOLOGY METHODOLOGY METHODOLOGY METHODOLOGY
 [9] METHODOLOGY SOFT SKILLS PROGRAMMING PROGRAMMING
[13] SOFT SKILLS THEMATIC COURSE METHODOLOGY METHODOLOGY
[17] METHODOLOGY METHODOLOGY METHODOLOGY METHODOLOGY
[21] SOFT SKILLS SOFT SKILLS SOFT SKILLS METHODOLOGY
[25] METHODOLOGY SOFT SKILLS THEMATIC COURSE PROGRAMMING
Levels: METHODOLOGY < PROGRAMMING < SOFT SKILLS < THEMATIC COURSE

5

Factors
Why use factors?

In many cases, you might ignore and avoid them. However:

Help ensure consistency when data is actually categorical

Many functions for statistical modeling (e.g., lm()) automatically
treat characters as factors, assigning dummy variables for each
level; also tools like ggplot2 for visualization use factors for
grouping or labeling axes

Ensure efficient storage of information as compared to characters,
thanks to their internal structure

Ordered data: see previous slide

6

Lists
Lists are flexible structure that contain objects of different types and different
lengths (including other lists… potentially creating an infinite Inception…)

myChaos = list(TRUE, 0:5, df$Hours, letters[8:18], "PSICOSTAT")
myChaos

[[1]]
[1] TRUE

[[2]]
[1] 0 1 2 3 4 5

[[3]]
 [1] 10 15 20 10 15 5 5 5 5 5 10 10 5 5 10 10 15 20 5 15 5 10 5 5
10
[26] 15 5 5

[[4]]
 [1] "h" "i" "j" "k" "l" "m" "n" "o" "p" "q" "r"

[[5]]
[1] "PSICOSTAT"

7

Lists
You can access elements of a list with indexing using the double square
brackets [[]]

A convenient function for inspecting the structure of a list is str():

myChaos[[3]]

 [1] 10 15 20 10 15 5 5 5 5 5 10 10 5 5 10 10 15 20 5 15 5 10 5 5
10
[26] 15 5 5

myChaos[[5]]

[1] "PSICOSTAT"

str(myChaos)

List of 5
 $: logi TRUE
 $: int [1:6] 0 1 2 3 4 5
 $: num [1:28] 10 15 20 10 15 5 5 5 5 5 ...
 $: chr [1:11] "h" "i" "j" "k" ...
 $: chr "PSICOSTAT"

8

Lists
If you name each element in the list, you can also access them using the $
operator, just like a dataframe

That’s not surprising… a dataframe is actually a special kind of list! just two key constraints:
1) all elements are vectors of the same length; 2) vectors are named.

myLittleList = list(name = "Enrico",
 sector = "m-psi/01",
 hours = c(42,40,10,10),
 school = c("psychology","amv","psychology","psychol

myLittleList$sector

[1] "m-psi/01"

myLittleList$hours

[1] 42 40 10 10

9

Lists
Why use lists?

Provide very flexible storage (for example, in a complex Monte Carlo
simulation you might want to store not just a single result from each
iteration, but multiple objects, such as each simulated dataframe, or whole
model outputs)

Common in R: many functions (e.g., lm()) return their summaries and
results as lists (even dataframes themselves are special cases of lists), so get
familiar with them!

Are used in many context for handling nested data (e.g., JSON-formatted
data)

10

Lists
example with a power simulation

This is an example of using a list in a power simulation. Typically, you store
only one or a few values (e.g., p-values), but lists allow storing all fitted objects
if needed.

N = 30; b0 = 0; b1 = 0.3; sigma = 1

niter = 1000
results = list()

for(i in 1:niter){
 x = rnorm(N, 0, 1)
 y = b0 + b1*x + rnorm(N, 0, sigma)

 results[[i]] = lm(y ~ x)
}

11

Matrices
In R, a matrix is a 2-dimensional structure that contains only elements of the
same type. Essentially, it can be thought of as a 2D vector.

You can create a matrix easily using the matrix() function:

(myMat = matrix(1:28, nrow=4, ncol=7))

 [,1] [,2] [,3] [,4] [,5] [,6] [,7]
[1,] 1 5 9 13 17 21 25
[2,] 2 6 10 14 18 22 26
[3,] 3 7 11 15 19 23 27
[4,] 4 8 12 16 20 24 28

(myMat = matrix(1:28, nrow=4, ncol=7, byrow=T))

 [,1] [,2] [,3] [,4] [,5] [,6] [,7]
[1,] 1 2 3 4 5 6 7
[2,] 8 9 10 11 12 13 14
[3,] 15 16 17 18 19 20 21
[4,] 22 23 24 25 26 27 28

12

Matrices
Indexing in matrices is similar to dataframes, with indexes for row(s) and
column(s), using [<row(s) index> , <column(s) index>]

Like in vectors, you can perform appropriate operations on matrix data:

myMat[2, 5] # access a single element

[1] 12

myMat[2:3, 5:7] # access ranges of elements

 [,1] [,2] [,3]
[1,] 12 13 14
[2,] 19 20 21

myMat^2 # element-wise squaring of all values

 [,1] [,2] [,3] [,4] [,5] [,6] [,7]
[1,] 1 4 9 16 25 36 49
[2,] 64 81 100 121 144 169 196
[3,] 225 256 289 324 361 400 441
[4,] 484 529 576 625 676 729 784

13

Matrices
Operator What it does Example

t() Transposes a
matrix

t(matrix(1:6,2))

%*% Matrix
multiplication

matrix(1:8,2) %*%
matrix(1:8,4)

* Element-wise
matrix
multiplication

matrix(1:8,2) *
matrix(1:8,2)

det() Determinant of a
square matrix

det(matrix(rnorm(16),4))

solve(A, b) Solves A*x = b solve(matrix(rnorm(16),4),
rnorm(4))

14

Matrices
Why use (know) matrices?

Mathematical operations: matrices are fundamental for many
tasks of linear algebra

Essential in modeling: many statistical methods for statistical
modeling and machine learning actually operate on matrices
(even though this may remain hidden to you)

Computational efficiency: much faster than dataframes for
numeric computations

15

Arrays
Arrays are multi-dimensional structures in R, generalizing vectors (1-
dimensional) and matrices (2-dimensional) to the n-dimensional case

It’s easy to create an array using the array() function:

→ this is kind of a “cubic-
structure” (3D structure): 3 rows,
5 columns, 2 slices

In a similar way, you could
create hypercubes and so on
(4D+)

myArr = array(1:30, dim = c(3,5,2))
myArr

, , 1

 [,1] [,2] [,3] [,4] [,5]
[1,] 1 4 7 10 13
[2,] 2 5 8 11 14
[3,] 3 6 9 12 15

, , 2

 [,1] [,2] [,3] [,4] [,5]
[1,] 16 19 22 25 28
[2,] 17 20 23 26 29
[3,] 18 21 24 27 30

16

Arrays
indexing
Indexing is exactly the same as with matrices but… with 3 (sets of) indices!

myArr[1, 4, 2] # extract a single element

[1] 25

myArr[1:2 , 1:2 ,] # extract subsets of elements

, , 1

 [,1] [,2]
[1,] 1 4
[2,] 2 5

, , 2

 [,1] [,2]
[1,] 16 19
[2,] 17 20

17

Arrays
Why use (know) arrays?

Might be useful for storing, and manipulate efficiently structure
of multi-dimensional data

Generally used in advanced topics and machine learning like
when working on image/video processing and spatial data

Arrays in R are conceptually similar to tensors in Python (e.g.,
NumPy, TensorFlow), where they play a fundamental role in
machine learning and deep learning, as they allow researchers
to manage large amounts of data with complex structures

18

