
Data Structures: Vectors
Enrico Toffalini

1

What Are Data Structures
Data structures, like vectors, matrices, dataframes,
lists, are fundamental tools that allow you to organize
and store complex information, so that they can be
easily processes by functions (e.g., lm() function may
fit a linear model on variables stored in a dataframe)
Most operations you will perform in R (e.g., processing
data, fitting models, plotting outputs) are performed
on these data structures

2

Vectors
Simple one-dimensional structures that store data of different types

Here is an actual example (of a numerical vector):

3

Vectors as 1-D Arrays
Vectors are just special cases of arrays

4

Create Vectors with c()
Vectors can easily be created using the c() base function, with a sequence of
elements separated by commas “,”

Vectors can be of different types. The following example shows a character
vector (note the quotes " " around objects):

or numeric:

Teachers = c("Pastore", "Kiesner", "Granziol", "Toffalini",
 "Calignano", "Epifania", "Bastianelli")

Hours = c(10, 15, 20, 10, 15, 5, 15, 5)

5

Vectors Must be Homogeneous
Vectors must contain elements of the same type. If you mix types, R will
automatically coerce the elements to a single type, which may lead to
undesired results.

Therefore, avoid mixing data types! Example:

everything was coerced to become a character!

If needed, use NA (Not Available):

Hours = c(10, 15, 20, 10, 15, "tbd", 15, 5)
Hours

[1] "10" "15" "20" "10" "15" "tbd" "15" "5"

Hours = c(10, 15, 20, 10, 15, NA, 15, 5)
Hours # remains a numerical vector, NA does not affect type

[1] 10 15 20 10 15 NA 15 5

6

Vectors Must be Homogeneous
You may coerce a vector to be a particular type if needed

But be careful! Elements that cannot be coerced to the target type, will be
replace with NA

Hours = c(10, 15, 20, 10, 15, "tbd", 15, 5)
Hours

[1] "10" "15" "20" "10" "15" "tbd" "15" "5"

as.numeric(Hours)

Warning: NAs introduced by coercion

[1] 10 15 20 10 15 NA 15 5

Hours = c("10", "15,", "20", " 10", "15 ", "tbd", "15.", "5_")
as.numeric(Hours)

Warning: NAs introduced by coercion

[1] 10 NA 20 10 15 NA 15 NA

7

Indexing Vectors
Select/extract elements with INDEXING using square brackets []:

Know the length of a vector using the length() function, and use it:

Hours = c(10, 15, 20, 10, 15, 5, 15, 5)
Hours[4] # a single element

[1] 10

Hours[5:7] # a range of elements

[1] 15 5 15

Hours[c(1,3,6)] # specific elements

[1] 10 20 5

length(Hours)

[1] 8

Hours[length(Hours)] # use it to extract the last element

[1] 5

8

Indexing Vectors
Negative indexing

You can use the minus sign - to select all elements except some from a vector.
(This method is also applicable to dataframes)

Hours = c(10, 15, 20, 10, 15, 5, 15, 5)
Hours[-4] # ALL BUT a single element

[1] 10 15 20 15 5 15 5

Hours[-c(5:7)] # ALL BUT a range of elements

[1] 10 15 20 10 5

Hours[-c(1,3,6)] # ALL BUT specific elements

[1] 15 10 15 15 5

Hours[-length(Hours)] # ALL BUT the last element

[1] 10 15 20 10 15 5 15

9

Logical Indexing
Often, you’ll need to extract values from a vector based on specific logical
conditions. Here’s an example:

This is called logical indexing because you are selecting elements based on a
logical vector (i.e., a sequence of TRUE, FALSE):

Also, you can use a vector to extract values from another vector:

Hours = c(10, 15, 20, 10, 15, 5, 15, 5)
Hours[Hours >= 15] # extract only values greater than or equal to 15

[1] 15 20 15 15

Hours >= 15 # the logical vector actually inside the square brackets

[1] FALSE TRUE TRUE FALSE TRUE FALSE TRUE FALSE

Teachers[Hours >= 15]

[1] "Kiesner" "Granziol" "Calignano" "Bastianelli"

10

Indexing and Assignment
With indexing, you can not only select, but also assign or modify elements in a
vector:

You can even assign values outside the current range of the vector. But what
happens?

Hours = c(10, 15, 20, 10, 15, 5, 15, 5)

Hours[1] = 0 # assign a new value
Hours[3] = Hours[3]+50 # modify an existing element
Hours

[1] 0 15 70 10 15 5 15 5

Hours[20] = 5
Hours

 [1] 0 15 70 10 15 5 15 5 NA NA NA NA NA NA NA NA NA NA NA 5

11

Operating on Vectors
you can simultaneously apply an operation to a whole vector, like

Of course, this is useful when you want to save the result as a new vector:

Similarly, you can apply functions to all elements of a vector:

Hours = c(10, 15, 20, 10, 15, 5, 15, 5)
Hours / 5

[1] 2 3 4 2 3 1 3 1

ECTS = Hours / 5

sqrt(Hours) # computes square root of each element

[1] 3.162278 3.872983 4.472136 3.162278 3.872983 2.236068 3.872983 2.236068

log(Hours) # computes the natural logarithm of each element

[1] 2.302585 2.708050 2.995732 2.302585 2.708050 1.609438 2.708050 1.609438

12

Summary Statistics on Vectors
A whole vector may serve to compute summary statistics, for example using
functions such as mean(), sd(), median(), quantile(), max(), min():

mean(Hours) # returns the average value (mean) of the vecto

[1] 11.875

sd(Hours) # returns the Standard Deviation of the vector

[1] 5.303301

median(Hours) # returns the median value of the vector

[1] 12.5

13

Summary Statistics on Vectors
A whole vector may serve to compute summary statistics, for example using
functions such as mean(), sd(), median(), quantile(), max(), min():

quantile(Hours, probs=c(.25, .50, .75)) # returns desired q

 25% 50% 75%
 8.75 12.50 15.00

max(Hours) # returns largest value

[1] 20

min(Hours) # returns smallest value

[1] 5

14

Summary Statistics - Managing Missing (NA) Values
All of the previous summary statistics will fail if there is even a single NA value:

You can easily manage missing values by adding the na.rm=TRUE argument:

Hours = c(10, 15, 20, 10, 15, NA, 15, 5)

mean(Hours) # a single NA value implies that the average is impossible

[1] NA

quantile(Hours, probs=c(.25, .75)) # quantile() will even return an Err

Error in quantile.default(Hours, probs = c(0.25, 0.75)): missing values
and NaN's not allowed if 'na.rm' is FALSE

mean(Hours, na.rm=TRUE) # NA values are ignored

[1] 12.85714

quantile(Hours, probs=c(.25, .75), na.rm=TRUE) # NA values are ignored

25% 75%
 10 15

15

Replacing NA With the Average Value
Replacing a missing value with the average across valid values is risky, as it
may alter many other summary statistics, but it is a good example for
understanding different concepts seen so far:

Hours = c(10, 15, 20, 10, 15, NA, 15, 5)

compute the average value ignoring NAs, and put it wherever
there is a NA value in the vector
Hours[is.na(Hours)] = mean(Hours, na.rm=TRUE)

now let's inspect the updated content of the vector
Hours

[1] 10.00000 15.00000 20.00000 10.00000 15.00000 12.85714 15.00000 5.00000

by the way... na.rm=TRUE is no longer needed now, as NA is no longer
mean(Hours)

[1] 12.85714

16

Frequency Counts
Another useful summary statistic is the frequency count, which shows how
often each unique value appears in a vector. You can use the table() function
to calculate frequencies easily:

Be careful: R is case sensitive!

type = c("METHODOLOGY", "METHODOLOGY", "PROGRAMMING", "SOFT SKILLS", "S
 "METHODOLOGY", "SOFT SKILLS", "METHODOLOGY", "PROGRAMMING")
table(type)

type
METHODOLOGY PROGRAMMING SOFT SKILLS
 4 2 3

type = c("METHODOLOGY", "methodology", "PROGRAMMING", "SOFT SKILLS", "S
 "METHODOLOGY", "SOFT SKILLS", "METHODOLOGY", "Programming")
table(type)

type
methodology METHODOLOGY Programming PROGRAMMING SOFT SKILLS
 1 3 1 1 3

17

