
Environment, Packages,
Functions, Import/Export

Enrico Toffalini

1

Install packages… and more
Traditional installing of a package from CRAN:

installing of multiple packages from CRAN at once:

For development or personal use, you may occasionally install packages from
outside CRAN, such as from GitHub:

After installing, you need to load the packages using function library:

install.packages("effsize")

install.packages(c("effsize","psych","ggplot2"))

devtools::install_github("FilippoGambarota/filor")
devtools::install_github("EnricoToffalini/toffee")

library(effsize)
library(ggplot2)

2

Install packages… and more
call functions
After loading a package, its functions are directly callable throughout the R
session:

you may directly call any function from any installed package, even without
loading it, using “::”; this is especially useful when there is a risk of functions
with conflicting names, or if you just don’t want to load an entire package for
using a single function:

library(psych)

fisherz(rho=0.8) # use a function from the "psych" package

[1] 1.098612

psych::fisherz(rho=0.8)

[1] 1.098612

3

Functions and arguments
Functions typically take some input parameters, known as arguments, process
that, and yield some output/result(s)

4

Functions and arguments
arguments

values or variables you pass to a function as input, or to control its behavior

for example, seq() generates a sequence of numbers; “from” and “to” are
arguments: it will provide the integers between these two extremes:

length.out controls how many equally spaced numbers must be generated:

alternatively, by defines the step size between numbers:

seq(from = 3, to = 7)

[1] 3 4 5 6 7

seq(from = 3, to = 7, length.out = 4)

[1] 3.000000 4.333333 5.666667 7.000000

seq(from = 3, to = 7, by = 0.6)

[1] 3.0 3.6 4.2 4.8 5.4 6.0 6.6

5

Functions and arguments
arguments

values or variables you pass to a function as input, or to control its behavior

rnorm() will generate “n” random numbers from a normal distribution with
“mean” as the average and “sd” as the standard deviation:

Positional matching - know that arguments names may be omitted if placed
in the correct order

rnorm(n = 5, mean = 100, sd = 15)

[1] 106.79681 70.22668 99.49541 74.45967 114.30017

rnorm(5, 100, 15)

[1] 92.09907 82.05890 67.75271 102.77268 54.38091

6

Functions and arguments
Default arguments - a function might still work even if some arguments are
omitted, as it can use its own default values (in this case “mean=0, sd=1”)

Errors - however, omitting mandatory arguments will result in an Error

Warnings - Some inputs may cause the function to produce Warnings and bad
output, but do not stop code execution

rnorm(n = 5)

[1] 0.5395298 -0.2850636 -1.7526744 -0.9979548 -0.4308542

rnorm(mean = 100, sd = 15)

Error in rnorm(mean = 100, sd = 15): argument "n" is missing, with no
default

rnorm(n = 5, mean = 100, sd = -15)

Warning in rnorm(n = 5, mean = 100, sd = -15): NAs produced

[1] NaN NaN NaN NaN NaN

7

Functions and arguments
HELP! see the documentation of a function
There are two ways to access documentation: using “?” and using help()

?rnorm # this will work
help(rnorm) # this does the same

8

Set up Working Directory
The Working Directory (WD) is the location of the folder in your
computer where R reads and saves files by default.

If you import/export anything (data, figures, workspaces, etc.)
you need to know your WD!

The getwd() function allows you to display the location of
your current WD. Let’s see my own:

getwd()

[1] "C:/Users/enric/OneDrive - Università degli Studi di
Padova/Documents/_DIDATTICA/R for Data Science/_GITHUB Basics R
DataScience/Slides"

9

Set up Working Directory
As a general rule:

When you open R or the RStudio app, the default WD may be the
documents folder (in Windows) or the home directory (e.g.,
/home/username; in Linux or macOS);

This default may be reset at any time from inside RStudio on Tools >
Global Options... > General;

When RStudio is newly open by opening a file (e.g., a .R script file), the WD
may be set at that file location (actually my favorite);

However, you can set a new WD at any time from within the R code, using
the setwd() function, for example:

setwd("C:/Users/enric/")

10

Set up Working Directory
RStudio Projects may eliminate the need of using
setwd() within scripts.

You can create a new project with File > New
Project... choose a specific folder

Keep all materials of your project in the same folder as the
newly created .Rproj file

As you open the .Rproj, it will automatically start a new
RStudio session with the WD set into that folder.

11

Set up Working Directory
Finally, not vital for now, but know the difference between:

Absolute path: "C:/Users/enric/" indicates the full directory path from
the root

Relative paths: for import/export purposes you may move around the
current WD

for example png(filename="figures/Fig1.png") may save into the
directory which is inside the current WD;

differently, png(filename="../figures/Fig1.png") may save into
the directory which is outside, one level up the current WD

f igu

Fig1.png
f igures

12

Import/export
Now let’s see how to perform import/export operations for:

The Workspace: all objects that exist in your current R
session, all results and computations stored so far (see them
in the “Environment” panel or with ls());

Data: SUPER IMPORTANT! we will focus especially on
tabular (Excel-like) data, that we treat as dataframes;

Figures: save your plots for reports and more in .pdf, .png,
and more formats.

13

Import/export
Workspace
All your R code (script) is generally stored in text files with a .R extension. But
where do you save your results and objects?!

You can export the entire workspace (with all your objects) using the
save.image() function:

Specifying "myWS.RData" is not mandatory but recommended, otherwise your file will
simply be named ".RData". (By the way… where will it be saved?)

let's populate the workspace first
myName = "Enrico"
prof = TRUE
coursesTaught = 4L
age = 36

now let's save it
save.image("myWS.RData")

14

Import/export
Workspace
Alternatively, you may even save just one or a few workspace objects, rather
than all:

This will save only variables myName and age into a newly created file named
myWS.RData

This may be useful when you have an overcrowded workspace and prefer to
save only a few objects that store the final results

let's populate the workspace first
myName = "Enrico"
prof = TRUE
coursesTaught = 4L
age = 36

now let's save only two objects
save(myName, age, file="myWS.RData")

15

Import/export
Workspace
Once you open a new R session, you may load the previously stored workspace
using the load() function, specifying load("workspace_name.RData"),
like this:

empty the workspace to make sure there's actually nothing!
rm(list=ls())
ls()

now load the previously saved workspace
load("myWS.RData")
make sure that the objects have been loaded
ls()

16

Import/export
Data
Arguably a fundamental skill for anyone working in data science!

Most people use MS Excel or similar software (e.g., LibreOffice Calc)
for handling data, which produce their own file formats (e.g.,
.xlsx). That’s perfectly fine. However… the most versatile data
format is .csv (comma-separated values), a simple text (no
formatting, no licences required) file format for storing tabular
data/dataframes.

Best practice: Save data in .csv format from your software of
choice before importing it in R.

17

Import/export
Data
Here’s an example of using the read.csv() function for importing data:

Actually, specifying “header=TRUE, sep=",", dec="."” is unnecessary and could be omitted because it is the
default… but it may be useful to get accustomed with functions arguments; also, in Italian Excel export settings, it
is possible that separator character (sep) be “;”, and decimal point character be “,” so… be aware of your settings!

IMPORT csv data from a "data" subfolder, and store it in an object na
df = read.csv("data/Performance.csv", header=TRUE, sep=",", dec=".")

head(df) # have a look at the first few rows

 id name anx acc time
1 1 nydga 20 15 2.077932
2 2 bwknr 14 9 2.436858
3 3 sauuj 18 12 2.549814
4 4 vnjgi 27 15 4.386718
5 5 oueiy 21 11 5.248933
6 6 neebj 12 13 3.463094

18

Import/export
Data
If you absolutely want to import your data directly from a MS Excel document
(.xlsx), you may use function read_excel() from the package readxl:

You may even import data from an SPSS document (.sav) using the read.spss()
function from the foreign package

library(readxl)
df = data.frame(read_excel("data/Performance.xlsx"))
data.frame() forces it to be a dataframe, otherwise it's a tibble
head(df)

 id name anx acc time
1 1 nydga 20 15 2.077932
2 2 bwknr 14 9 2.436858
3 3 sauuj 18 12 2.549814
4 4 vnjgi 27 15 4.386718
5 5 oueiy 21 11 5.248933
6 6 neebj 12 13 3.463094

19

Import/export
Data
A good trick if you don’t want to specify any relative or absolute path, and
want to manually select data each time, is using the file.choose() function:

df = read.csv(file.choose(), header=TRUE, sep=",", dec=".")

20

Import/export
Data
Other “tricks” for importing data involve using the functions in the RStudio
menu, particularly:

File > Import Dataset > From text (base)…

File > Import Dataset > From Excel

File > Import Dataset > From SPSS…

However … using these functions is not best practice, because they are
specific to the RStudio IDE. It’s better to use code for reproducibility

21

Import/export
Data
You have processed data with R, now… how to export it?

When collaborating with someone also using R, you may choose to exchange
data directly by exporting the object or the entire workspace as a .RData file,
using the save() or save.image() function respectively.

However, if you need to export your data in a more universally readable
tabular format, such as .csv, you may use write.table():

specify the dataframe to export (here named "df")
along with the desired file name, and other arguments

write.table(df, file="myExportedData.csv", sep=",", row.names=F)

22

Import/export
Figures
R has a collection of functions for exporting figures in different formats: pdf(),
png(), jpeg(), bmp(), tiff(), svg().

Here is an example using png() :
set up a graphic output file named "MyFigure.png" with some settings
png("MyFigure.png", height=1500, width=2000, units="px", res=300)

code for creating a simple boxplot
boxplot(iris$Sepal.Width)

close the graphic output file and actually export the plot
dev.off()

23

