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Create, name objects
In R, everything is an object: variables, vectors, dataframes, functions, even
entire environments.

Let’s create a variable named “age” that contains a single numerical value:

Now let’s simply inspect its content

age = 20 # assign number 20 to variable named "age"

age

[1] 20

# alternative way of showing content, 
# useful in programming when within functions or loops
print(age)

[1] 20

# for more complex data structures the "str" function may be useful
str(age)

 num 20
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Create, name objects
Assignment operators
In R, both the assignment operator “=” and “<-” can be used to assign values
to objects. In fact, “<-” is considered more traditional in R. and preferred for
clarity, also because it allows differentiating assignment from other uses of
“=”.

However, unlike many other teachers, I will generally favor “=” as the
assignment operator in order to maintain consistency with the convention in
most other programming languages

# these two commands do the same thing 
age <- 20
age = 20
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Create, name objects
Rules for naming objects in R
Strict rules:

Start with a letter or dot (if dot, must not be followed by a number);

Include only letters, numbers, dots, underscores;

No reserved words (e.g., “if”, “for”, “NA”, “function”).

Recommendations:

Avoid names that conflict with common functions (e.g., “mean”, “sum”, “c”);

Be concise: no length limit, but long names are difficult to read and type.

WARNING! R is Case sensitive: age and Age will be treated as two different
objects!
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Create, name objects
Rules for naming objects in R
Examples:

Allowed: “age”, “age0”, “age1”, “total_score”, “.myData”, “my.data”,

NOT allowed: “0age”, “_age”, “.0myData”, “my data”, “my-data”,
“my,data”, “for”, “NA”

WARNING! Use of “.” in object names (e.g., “my.data”) is fine in R but not
allowed in Python, where “.” is part of the language syntax.

Across different languages, naming conventions for longer, multi-word variable
names favor snake_case (e.g., “my_data”) or camelCase (e.g., “myData”),
and abbreviations where appropriate (e.g., “unipdData” better than
“university_of_padova_dataset”)… preferably used in a consistent way!

5



Use basic operations
R as calculator: some basic operators

Operator What it does Example Result

+ Addition 5.4 + 6.1 11.5

- Subtraction 9 - 4.3 4.7

* Multiplication 7 * 1.4 9.8

/ Division 9 / 12 0.75

%/% Floor division 13 %/% 4 3

%% Modulus 13 %% 4 1

^ Exponentiation 15 ^ 2 225

(also useful: object “pi” contains 3.1415927)
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Use basic operations
R as calculator: useful functions

Function What it does Example Result

abs absolute value abs(4.3-9.8) 5.5

sqrt square root sqrt(176.4) 13.28157

exp exponential function exp(2.2) 9.025013 ()

log natural logarithm,
base

log(9.025013) 2.2

log logarithm, given base log(10, base=2) 3.321928

round round to integer round(1.7384) 2

round round to digits round(1.7384, 2) 1.74
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Use basic operations
R as calculator: use of parentheses
The order of operations in R follows standard algebraic rules, unless you
specify a different order using parentheses. In R, only round parentheses ( )
are used for grouping in algebraic expressions, NOT square [ ] and curly { }
brackets, because they have other specific syntactic purposes.

Examples:
2 * 3 + 3^2

[1] 15

2 * (3 + 3)^2

[1] 72

(2 * (3 + 3))^2

[1] 144
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Use basic operations
Relational operators
They are used to compare values and return logical values (TRUE, FALSE).

Let’s say that we defined age = 20, now let’s make a few examples:

Operator What it does Example Result

== Equal to age == 18 FALSE

!= Not equal to age != 18 TRUE

> Greater than age > 18 TRUE

< Less than age < 18 FALSE

>= Greater than or equal to age >= 18 TRUE

<= Less than or equal to age <= 18 FALSE
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Use basic operations
Basic logical operators
They are used to combine logical values (TRUE, FALSE).

Once again, let’s say that we defined age = 20, now let’s make a few
examples:

Operator What it does Example Result

& AND age>25 & age<60 FALSE

| OR age<25 | age>60 TRUE

! NOT !(age<18) TRUE
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Basic types of data
numeric and logical
So far, we have already encountered at least two types of data:

numeric (e.g., 20, 11.5, 13.28157);

logical/Boolean (i.e., TRUE, FALSE).

Actually, numeric data could actually be of two types: double (i.e., “double-
precision floating-point”) that is with decimals like 11.5, and integer like 20.

In fact, by default, numeric values are always treated as double ( even if
without decimals). To specify a number explicitly as integer, add an L after the
number, like age = 20L (you likely will not need this, unless you explicitly
need integers for some purposes, such as saving memory).
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Basic types of data
characters
Another very important type of data is:

character (often called strings). This is used to store any text, and must be
enclosed in quotes (' ', or " "), like this:

You may perform many operations with strings like:

myName = "Enrico"

myName == "Bob" # is my name equal to Bob?

[1] FALSE

myName != "Bob" # is my name NOT equal to Bob?

[1] TRUE

myName > "Bob" # is my name larger than Bob? (??? alphabetically!)

[1] TRUE
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Basic types of data
know the type of a variable
The typeof() function tells you what type of data you are handling:

myName = "Enrico"
prof = TRUE
coursesTaught = 4L
age = 36

# see data types
typeof(myName)

[1] "character"

typeof(prof)

[1] "logical"

typeof(coursesTaught)

[1] "integer"

typeof(age)

[1] "double"
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Basic types of data
know the type of a variable
You may also inquire data type directly with functions is.*:

is.logical(prof)

[1] TRUE

is.logical(age)

[1] FALSE

is.numeric(age)

[1] TRUE

is.infinite(age)

[1] FALSE

is.character(myName)

[1] TRUE

is.na(myName) # checks if a value is missing (i.e., NA) 

[1] FALSE
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