
Basic Operations,
Basic Types of Data

Enrico Toffalini

1

Create, name objects
In R, everything is an object: variables, vectors, dataframes, functions, even
entire environments.

Let’s create a variable named “age” that contains a single numerical value:

Now let’s simply inspect its content

age = 20 # assign number 20 to variable named "age"

age

[1] 20

alternative way of showing content,
useful in programming when within functions or loops
print(age)

[1] 20

for more complex data structures the "str" function may be useful
str(age)

 num 20

2

Create, name objects
Assignment operators
In R, both the assignment operator “=” and “<-” can be used to assign values
to objects. In fact, “<-” is considered more traditional in R. and preferred for
clarity, also because it allows differentiating assignment from other uses of
“=”.

However, unlike many other teachers, I will generally favor “=” as the
assignment operator in order to maintain consistency with the convention in
most other programming languages

these two commands do the same thing
age <- 20
age = 20

3

Create, name objects
Rules for naming objects in R
Strict rules:

Start with a letter or dot (if dot, must not be followed by a number);

Include only letters, numbers, dots, underscores;

No reserved words (e.g., “if”, “for”, “NA”, “function”).

Recommendations:

Avoid names that conflict with common functions (e.g., “mean”, “sum”, “c”);

Be concise: no length limit, but long names are difficult to read and type.

WARNING! R is Case sensitive: age and Age will be treated as two different
objects!

4

Create, name objects
Rules for naming objects in R
Examples:

Allowed: “age”, “age0”, “age1”, “total_score”, “.myData”, “my.data”,

NOT allowed: “0age”, “_age”, “.0myData”, “my data”, “my-data”,
“my,data”, “for”, “NA”

WARNING! Use of “.” in object names (e.g., “my.data”) is fine in R but not
allowed in Python, where “.” is part of the language syntax.

Across different languages, naming conventions for longer, multi-word variable
names favor snake_case (e.g., “my_data”) or camelCase (e.g., “myData”),
and abbreviations where appropriate (e.g., “unipdData” better than
“university_of_padova_dataset”)… preferably used in a consistent way!

5

Use basic operations
R as calculator: some basic operators

Operator What it does Example Result

+ Addition 5.4 + 6.1 11.5

- Subtraction 9 - 4.3 4.7

* Multiplication 7 * 1.4 9.8

/ Division 9 / 12 0.75

%/% Floor division 13 %/% 4 3

%% Modulus 13 %% 4 1

^ Exponentiation 15 ^ 2 225

(also useful: object “pi” contains 3.1415927)

6

Use basic operations
R as calculator: useful functions

Function What it does Example Result

abs absolute value abs(4.3-9.8) 5.5

sqrt square root sqrt(176.4) 13.28157

exp exponential function exp(2.2) 9.025013 ()

log natural logarithm,
base

log(9.025013) 2.2

log logarithm, given base log(10, base=2) 3.321928

round round to integer round(1.7384) 2

round round to digits round(1.7384, 2) 1.74

7

Use basic operations
R as calculator: use of parentheses
The order of operations in R follows standard algebraic rules, unless you
specify a different order using parentheses. In R, only round parentheses ()
are used for grouping in algebraic expressions, NOT square [] and curly { }
brackets, because they have other specific syntactic purposes.

Examples:
2 * 3 + 3^2

[1] 15

2 * (3 + 3)^2

[1] 72

(2 * (3 + 3))^2

[1] 144

8

Use basic operations
Relational operators
They are used to compare values and return logical values (TRUE, FALSE).

Let’s say that we defined age = 20, now let’s make a few examples:

Operator What it does Example Result

== Equal to age == 18 FALSE

!= Not equal to age != 18 TRUE

> Greater than age > 18 TRUE

< Less than age < 18 FALSE

>= Greater than or equal to age >= 18 TRUE

<= Less than or equal to age <= 18 FALSE

9

Use basic operations
Basic logical operators
They are used to combine logical values (TRUE, FALSE).

Once again, let’s say that we defined age = 20, now let’s make a few
examples:

Operator What it does Example Result

& AND age>25 & age<60 FALSE

| OR age<25 | age>60 TRUE

! NOT !(age<18) TRUE

10

Basic types of data
numeric and logical
So far, we have already encountered at least two types of data:

numeric (e.g., 20, 11.5, 13.28157);

logical/Boolean (i.e., TRUE, FALSE).

Actually, numeric data could actually be of two types: double (i.e., “double-
precision floating-point”) that is with decimals like 11.5, and integer like 20.

In fact, by default, numeric values are always treated as double (even if
without decimals). To specify a number explicitly as integer, add an L after the
number, like age = 20L (you likely will not need this, unless you explicitly
need integers for some purposes, such as saving memory).

11

Basic types of data
characters
Another very important type of data is:

character (often called strings). This is used to store any text, and must be
enclosed in quotes (' ', or " "), like this:

You may perform many operations with strings like:

myName = "Enrico"

myName == "Bob" # is my name equal to Bob?

[1] FALSE

myName != "Bob" # is my name NOT equal to Bob?

[1] TRUE

myName > "Bob" # is my name larger than Bob? (??? alphabetically!)

[1] TRUE

12

Basic types of data
know the type of a variable
The typeof() function tells you what type of data you are handling:

myName = "Enrico"
prof = TRUE
coursesTaught = 4L
age = 36

see data types
typeof(myName)

[1] "character"

typeof(prof)

[1] "logical"

typeof(coursesTaught)

[1] "integer"

typeof(age)

[1] "double"

13

Basic types of data
know the type of a variable
You may also inquire data type directly with functions is.*:

is.logical(prof)

[1] TRUE

is.logical(age)

[1] FALSE

is.numeric(age)

[1] TRUE

is.infinite(age)

[1] FALSE

is.character(myName)

[1] TRUE

is.na(myName) # checks if a value is missing (i.e., NA)

[1] FALSE

14

